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1 Properties of Harmonic Functions

1.1 Elliptic regularity

Recall that if we have the Laplace equation

−∆u = f in Rn,

then we have the fundamental solution

K(x) =

{
cn
|x|2−n = cn

|x|2−n| n ≥ 3
1

2π ln |x| n = 2,

and we can get a solution u = K ∗ f . However, there are a number of questions we have
not answered, such as uniqueness of solutions.

Definition 1.1. A function u such that −∆u = 0 is called harmonic.

Theorem 1.1 (Elliptic regularity). Harmonic functions are smooth.

That is, if we have a local solution u ∈ D′, we want to show that u ∈ C∞. Why should
harmonic functions be smooth? This is because the fundamental solution K is smooth
away from 0. Let’s see how the reasoning goes.

Proof. Let Ω be the domain where u lives. Choose a point x0 ∈ Ω, and we want to show
that u is smooth around x0. Draw a ball B around x0 and a larger ball 2B around B. To
use the fundamental solution, chop off u by using a cutoff function

χ(x) =


1 x ∈ B
smooth x ∈ 2B \B
0 x ∈ 2Bc
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If we let v = χu, then

−∆u = −χ∆u︸ ︷︷ ︸
=0

−u∆χ− 2∇u · ∇χ.

This gives us the new problem

−∆ = f, f ∈ D′, supp f ⊆ 2B \B.

Then

v(x) = (K ∗ f)(x)

=

∫
K(x− y)f(y) dy.

Suppose we want a local solution in, say, B/2, where B has radius R. If x ∈ B/2 and
y ∈ 2B \ B, then |x − y| ≥ r/2. Now K(z) is smooth where |z| ≥ r/2, which means this
convolution is smooth for x ∈ B/2.

Remark 1.1. We didn’t use much about the Laplace equation itself here. We only used
the fact that K is smooth away from 0.

Remark 1.2. This is not all there is to elliptic regularity. K is analytic away from 0,
which tells us that u is analytic.

Remark 1.3. More generally, we may want to make statements about what kind of reg-
ularity u has if f has a certain degree of regularity. This is what elliptic regularity really
is, and this is only the tip of the iceberg.
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1.2 The maximum principle

Definition 1.2. A function u such that −∆u ≤ 0 is called subharmonic.

Definition 1.3. A function u such that −∆u ≥ 0 is called superharmonic.

We will prove results for harmonic functions and claim that they hold for sub and
superharmonic functions, as well.

Suppose −∆u = 0 in Ω. Where is the max/min of u? The first step to answering this
question is to look at the mean value property.

Theorem 1.2 (Mean value property). Suppose −∆u = 0 in B(x0, a). Then

u(x0) =
1

|B|

∫
B
u(x) dx

=
1

|∂B|

∫
∂B
u(x)dσ,

where σ is surface measure on the sphere ∂B.

Remark 1.4. If we assume u is subharmonic, i.e. −∇u ≤ 0, then we get ≤ instead of
equalities. The reverse inequality holds for superharmonic functions.

Lemma 1.1 (Green’s theorem). Suppose u : Ω→ R. Then∫
Ω
∂ju dx =

∫
∂Ω
u · νj dσ,

where νj is the outward pointing normal to ∂Ω. Equivalently,∫
∂juj︸︷︷︸
div u

dx =

∫
∂Ω
u · ν dσ.

Here’s how we can use this: Integrating by parts twice in the following integral keeps
the sign the same and introducing 2 boundary terms:∫

−∆u · v dx−
∫

Ω
u · (−∆n) dx =

∫
∂Ω
∂juνj︸ ︷︷ ︸
∂u
∂v

·v − u · νj∂jv︸ ︷︷ ︸
∂v
∂ν

dσ,

where these are normal derivatives. Now let’s prove the mean value property:

Proof. Suppose B = B(0, r), and apply Green’s theorem with a well-chosen v. Looking at
our equation, it would be nice if we could make v = 0 on the boundary. So we can try

v = K(|x|)−K(r).
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We get

u(0) = c

∫
∂B
u dσ.

This holds for all harmonic functions. If we set u = 1, then we get c = 1
|∂B| , so u =

1
|∂B|

∫
∂B u.

Corollary 1.1. If u(x0) = maxu for x0 ∈ B, then u is constant in B.

Remark 1.5. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum in this property.

Theorem 1.3 (Strong maximal principle). Suppose u ∈ C2(Ω)∩C(Ω) is harmonic. Then

max
Ω

u = max
∂Ω

u.

Moreover, if maxu is attained inside Ω, then u is constant.

The hypotheses here are much stronger than they need to be.

Remark 1.6. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum.

Proof. If maxu is only attained on ∂Ω, then we ar edone. What if maxu is attained at
x0 ∈ Ω? Here is a proof by picture. Put a ball around x0. By the corollary, u is constant
in B. Then the other points in this ball are maximum points, and we can get to any other
point via a sequence of balls.

If you want to write down a proof, you can use path-connectedness, or you can use an
argument like this: Let A = {x ∈ Ω : u(x) = u(x0)}. Since u is continuous, A is closed.
But the corollary says that if x0 ∈ A, then B(X0, r) ⊆ A. So A is open. Thus, A ⊆ Ω is
open and closed, and if Ω is connected, we get A = Ω.
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The maximal principle is much more general than the proof we have given here. Here
is a restatement of this property:

Corollary 1.2 (Comparison principle). Let u be subharmonic, i.e., −∆u ≤ 0, and let v
be subharmonic, i.e., −∆v ≥ 0. If u ≤ v on ∂Ω, then u ≤ v in ∂Ω.

Proof. Apply the maximal principle to u− v.

This comparison principle is the correct statement for nonlinear elliptic stuff and also
for the Hamilton-Jacobi equations. There is a simpler proof of the maximum principle
without the use of the fundamental solution where we drop the strong part.

Proof. Suppose first that −∆u < 0. Let x0 be a maximum point inside Ω. Then ∇u(x0) =

0, and Hu(x0) ≺ 0, where H = ∂2u
∂xi∂xj

is the Hessian matrix. Observe that

∆u =
∑
j

∂j∂ju = trHu ≤ 0.

Then ∆u(x0) ≤ 0, so −∆u(x0) ≥ 0. But this contradicts our assumption that −∆u < 0.
Now if −∆u ≤ 0, then we penalize u by replacing u by uε = u+ εx2. Then

−∆uε = −∆u− 2uε < 0.

This tells us that
max

Ω
uε = max

∂Ω

uε.

If we let ε→ 0, both sides converge uniformly to maxΩ u and max∂Ω u, respectively.

1.3 Liouville’s theorem

We have been looking at harmonic functions in a domain Ω. What if we are looking at
harmonic functions in all of Rn? If you allow exponential growth, then the sky is the limit
as to what you can get. But what if we only want polynomial growth. Further yet, what
if u is bounded?

Theorem 1.4 (Liouville). Let u be harmonic in Rn. If u is bounded, then u is constant.

Proof. If u is harmonic, so are its derivatives. Then

u(x0)
MVP
= 6

∫
Ω
∂ju(x) dx

=
1

|BR|

∫
∂BR

u · νj dσ(x).
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If |u| ≤M , we can estimate this by

|∂ju(x0)| ≤ 1

BR︸︷︷︸
Rn

M |∂BR|︸ ︷︷ ︸
Rn−1

.
M

R
R→∞−−−−→ 0.

So ∇u(x0) = 0, which means that u is constant.

Remark 1.7. If u is temperate, then û||ξ|2 = 0, so û is supported at 0. Then û =∑
α cα∂

(α)
0 , which implies that u is a polynomial. Thus all temperate harmonic functions

are polynomials. This also serves as a proof of Liouville’s theorem, since the only bounded
polynomials are constant.

1.4 Boundary value problems

Let Ω ⊆ Rn, and suppose that {
−∆u = f in Ω

u = g on ∂Ω.

This give us uniqueness: Suppose u1, u2 are solutions. If u1 − u2 = v, then v is harmonic.
The maximum and minimum principles give

max
Ω

v ≤ max
∂Ω

v = 0,

min
Ω
v ≥ min

∂Ω
v = 0.

So v = 0.
There is also a proof of existence using hte maximum principle. Consider a subsolution

v− satisfying {
−∆v− ≤ f
v ≤ g

and a supersolution satisfying {
−∆v+ ≥ f
v ≥ g
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The maximum principle v∗ ≥ v−. Taking the maximum over all supersolutions and subso-
lutions gives the largest subsolution and the smallest supersolution.

This is called Perron’s method. We can also find a fundamental solution in Ω, called a
Green function.
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