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1 Properties of Harmonic Functions

1.1 Elliptic regularity
Recall that if we have the Laplace equation

—Au=f in R™,
then we have the fundamental solution

Cn — Cn
K(z) = 27 = 227 n>3
= In |z| n =2,

and we can get a solution u = K * f. However, there are a number of questions we have

not answered, such as uniqueness of solutions.

Definition 1.1. A function w such that —Awu = 0 is called harmonic.

Theorem 1.1 (Elliptic regularity). Harmonic functions are smooth.

That is, if we have a local solution u € D', we want to show that u € C°°. Why should
harmonic functions be smooth? This is because the fundamental solution K is smooth

away from (. Let’s see how the reasoning goes.

Proof. Let Q be the domain where u lives. Choose a point zg € §2, and we want to show
that u is smooth around zg. Draw a ball B around xy and a larger ball 2B around B. To

use the fundamental solution, chop off u by using a cutoff function

1 r€B
X(z) = ¢ smooth = € 2B\ B
0 x € 2B°



If we let v = xu, then

—Au = —xAu—ulAyx — 2Vu - Vy.
=0

This gives us the new problem
—A=f feD, supp f C 2B\ B.
Then

v(z) = (K * f)(z)
=/K(x—y)f(y)dy-

Suppose we want a local solution in, say, B/2, where B has radius R. If x € B/2 and
y € 2B\ B, then |z — y| > r/2. Now K(z) is smooth where |z| > r/2, which means this
convolution is smooth for x € B/2. O

Remark 1.1. We didn’t use much about the Laplace equation itself here. We only used
the fact that K is smooth away from 0.

Remark 1.2. This is not all there is to elliptic regularity. K is analytic away from O,
which tells us that « is analytic.

Remark 1.3. More generally, we may want to make statements about what kind of reg-
ularity u has if f has a certain degree of regularity. This is what elliptic regularity really
is, and this is only the tip of the iceberg.



1.2 The maximum principle
Definition 1.2. A function w such that —Awu < 0 is called subharmonic.
Definition 1.3. A function « such that —Awu > 0 is called superharmonic.

We will prove results for harmonic functions and claim that they hold for sub and
superharmonic functions, as well.

Suppose —Au = 0 in . Where is the max/min of u? The first step to answering this
question is to look at the mean value property.

Theorem 1.2 (Mean value property). Suppose —Au =0 in B(xg,a). Then

1
u(zg) = |B‘/Bu(a:) dx
1

= — u(x)do,
98] o "

where o is surface measure on the sphere 0B.

Remark 1.4. If we assume u is subharmonic, i.e. —Vu < 0, then we get < instead of
equalities. The reverse inequality holds for superharmonic functions.

Lemma 1.1 (Green’s theorem). Suppose u : 2 — R. Then

/ajudx:/ u-v;do,
Q o0

where v; is the outward pointing normal to 0€). Equivalently,

/8juj dm:/ u-vdo.
N~~~ o0

divu

Here’s how we can use this: Integrating by parts twice in the following integral keeps
the sign the same and introducing 2 boundary terms:

/—Au ~vdr — / u-(—An)dr = Ojuv; v —u - vj0;v do,
Q aQ\?},-/ \T
v v

where these are normal derivatives. Now let’s prove the mean value property:

Proof. Suppose B = B(0,r), and apply Green’s theorem with a well-chosen v. Looking at
our equation, it would be nice if we could make v = 0 on the boundary. So we can try

v=K(|z|]) — K(r).



We get
u(0) = c/ udo.
oB

This holds for all harmonic functions. If we set v = 1, then we get ¢ = |a_lB|v SO u =

O

1
0B8] Jopu-
Corollary 1.1. If u(zg) = maxu for xo € B, then u is constant in B.

Remark 1.5. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum in this property.

Theorem 1.3 (Strong maximal principle). Suppose u € C?(2) N C(Q) is harmonic. Then

maxu = maxu.
Q 0

Moreover, if maxu is attained inside ), then u is constant.
The hypotheses here are much stronger than they need to be.

Remark 1.6. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum.

Proof. If maxu is only attained on 0f2, then we ar edone. What if maxwu is attained at
xo € 27 Here is a proof by picture. Put a ball around zy. By the corollary, u is constant
in B. Then the other points in this ball are maximum points, and we can get to any other
point via a sequence of balls.

If you want to write down a proof, you can use path-connectedness, or you can use an
argument like this: Let A = {z € Q : u(x) = u(zp)}. Since u is continuous, A is closed.
But the corollary says that if 29 € A, then B(Xy,7) C A. So A is open. Thus, A C  is
open and closed, and if 2 is connected, we get A = Q. O



The maximal principle is much more general than the proof we have given here. Here
is a restatement of this property:

Corollary 1.2 (Comparison principle). Let u be subharmonic, i.e., —Au <0, and let v
be subharmonic, i.e., —Av > 0. If u < v on 02, then u < v in 0.

Proof. Apply the maximal principle to u — v. O

This comparison principle is the correct statement for nonlinear elliptic stuff and also
for the Hamilton-Jacobi equations. There is a simpler proof of the maximum principle
without the use of the fundamental solution where we drop the strong part.

Proof. Suppose first that —Awu < 0. Let x9 be a maximum point inside Q. Then Vu(zg) =

0, and Hu(zg) < 0, where H = 818252: is the Hessian matrix. Observe that
1JT;

Au = Zﬁjaju =trHu <0.
J

Then Au(zg) <0, so —Au(xzg) > 0. But this contradicts our assumption that —Awu < 0.
Now if —Awu < 0, then we penalize u by replacing u by u, = u + ex?. Then

—Aue: = —Au — 2ue < 0.

This tells us that
max t, = Imax U.
Q (o283

If we let € — 0, both sides converge uniformly to maxg u and maxpq u, respectively. ]

1.3 Liouville’s theorem

We have been looking at harmonic functions in a domain 2. What if we are looking at
harmonic functions in all of R™? If you allow exponential growth, then the sky is the limit
as to what you can get. But what if we only want polynomial growth. Further yet, what
if w is bounded?

Theorem 1.4 (Liouville). Let u be harmonic in R™. If u is bounded, then u is constant.

Proof. If u is harmonic, so are its derivatives. Then

u(zo) MXP//Q Oju(z) dx
1

= — u-vido(x).
\Br| Jop, ’ (=)



If |lu| < M, we can estimate this by

1
|0ju(zo)| < —— M |0BR]
R SN——

Rn—1

ém\isg@v
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So Vu(zg) = 0, which means that u is constant. O

Remark 1.7. If u is temperate, then @||¢]> = 0, so @ is supported at 0. Then u =
Y oa ca(?(()a) , which implies that u is a polynomial. Thus all temperate harmonic functions

are polynomials. This also serves as a proof of Liouville’s theorem, since the only bounded
polynomials are constant.

1.4 Boundary value problems

Let 2 C R™, and suppose that

—Au=f inQ
u=g on Jf).

This give us uniqueness: Suppose u1,us are solutions. If u; — us = v, then v is harmonic.
The maximum and minimum principles give

maxv < maxv = 0,
Q [2)9]

minv > minv = 0.
Q o0

So v = 0.
There is also a proof of existence using hte maximum principle. Consider a subsolution
v~ satisfying

v<g

{—Avéf
and a supersolution satisfying

V=g

{—Av*zf



The maximum principle v* > v~. Taking the maximum over all supersolutions and subso-
lutions gives the largest subsolution and the smallest supersolution.

This is called Perron’s method. We can also find a fundamental solution in €2, called a
Green function.
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